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Figure 1. Species distribution models describe the relationship between environmental conditions and (actual or potential)
species presence. However, the link between the environment and species distribution data can be complex, particularly since
distributional data comes in many different forms. Above are four different sources of distribution data for the Von Der Decken’s
Hornbill [11]: (from left to right) raw point observations, regional checklists, gridded ecological surveys, and data-driven
expert range maps. All images are from Map of Life [101].

Abstract
Conservation science depends on an accurate understand-
ing of what’s happening in a given ecosystem. How many
species live there? What is the makeup of the population?
How is that changing over time? Species Distribution Mod-
eling (SDM) seeks to predict the spatial (and sometimes tem-
poral) patterns of species occurrence, i.e. where a species is
likely to be found. The last few years have seen a surge of
interest in applying powerful machine learning tools to chal-
lenging problems in ecology [2, 5, 8]. Despite its considerable
importance, SDM has received relatively little attention from
the computer science community. Our goal in this work is to
provide computer scientists with the necessary background
to read the SDM literature and develop ecologically useful
ML-based SDM algorithms. In particular, we introduce key
SDM concepts and terminology, review standard models,
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1 Introduction
Ecological research helps us to understand ecosystems and
how they respond to climate change, human activity, and
conservation policies. Much of this work starts by deploying
networks of sensors (often cameras or microphones) to mon-
itor the organisms living in a fixed study area. Ecologists
must then invest significant effort to filter, label, and ana-
lyze this data. This step is often a bottleneck for ecological
research. For example, it can take years for scientists to pro-
cess and interpret a single season of data from a network of
camera traps. In another case, building real-time estimates
of salmonid escapement requires teams of field ecologists
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Data collection method Example Observation type
Community science observations iNaturalist Presence-only

Community science checklists eBird Presence-absence
Static sensors Camera traps Presence-absence

Sample collection Insect trapping Presence-absence
Expert field surveys Line transects Presence-absence

Historic records, natural history collections Herbarium sheets Presence-only
Table 1. Sources of species observation data. Each of these examples represents a method of collecting or accessing observations
of different species. One important distinction is whether the observations are presence-only or presence-absence. Presence-only
data consists of locations where a species has been sighted. Presence-absence data also includes locations where a species was
checked for but not observed.

working in shifts to watch streams of sonar data 24 hours a
day. The challenge is even greater for taxa that are studied
by trapping specimens, such as beetles and other insects.
Entomologists can collect thousands of beetles in a few days,
but it may require months or years for a suitable expert to
exhaustively identify all of the specimens to the species level.
Machine learning methods can significantly accelerate

the processing and analysis of large repositories of raw data
[6, 9, 10, 16, 33], which can increase the speed and geographic
scope of ecological analysis. For instance, ongoing collabora-
tions between machine learning researchers and ecologists
have lead to tremendous progress in automating species iden-
tification from images in community science data [18, 190]
and camera trap data [16, 29]. However, unfamiliar ecological
concepts and terminology can present a barrier to entry for
many computer scientists whomight otherwise be interested
in contributing to ecological problems. This is particularly
true for more involved ecological problems which may not
fit neatly into existing machine learning paradigms.

One such area is species distribution modeling (SDM):
using species observations and environmental data to esti-
mate the geographic range of a species.1 This problem has
received significant attention from ecologists and statisti-
cians, and there has been increasing interest in machine
learning methods due to the large amounts of available data
and the highly complex relationships between species and
their environments. This document is meant to serve as an
easy entry point for computer scientists interested in SDM.
In particular, we aim to highlight the exciting technical chal-
lenges posed by SDM while also emphasizing the needs of
end-users to encourage ecologically meaningful progress.
Our hope is that this document can serve as a quick resource
for computer science researchers interested in getting started
working on conservation and sustainability applications.

The rest of this work is organized as follows. In Section
2 we discuss different ways to represent the distribution
of a species. We discuss species distribution modeling in

1We will use the term “species distribution modeling" throughout this
document, though sometimes the closely related term “ecological niche
modeling" would be more appropriate [145].

Section 3 and we consider other related ecological modeling
problems in Section 4. In Section 5 we point out pitfalls and
challenges in SDM. Finally, we provide pointers to available
data (Section 6) and discuss open problems (Section 7).

2 Representing the distribution of species
The distribution of a species is typically represented as amap
which indicates the spatial extent of the species. These maps
can be created in a variety of ways, ranging from highly
labor-intensive expert range maps to fully automatic species
distribution models. We show four examples in Fig. 1. In this
section we give a high-level overview of three important
sources of maps: raw species observation data, predictions
from statistical models, and expert knowledge.

2.1 Raw species observation data.
Any representation of the distribution of a species begins
with some sort of species observation data. In general, species
observation data consists of records indicating whether a
species is present or absent at certain locations. Species
observation data can take many forms – see Table 1 for
examples. Species observation data falls into two general
categories: presence-only data reports known sightings,
or occurrences, of a species, while presence-absence data
also provides information on where a species did not occur.
Data collection strategies define whether absence data will
be available. For instance, iNaturalist collects opportunis-
tic imagery of species from community scientists, which
produces presence-only species observations. On the other
hand, eBird uses species checklists where all bird species
seen and/or heard within a time span at a given location
are reported. Since exhaustive reporting is expected from
observers, any bird species not reported is assumed to be ab-
sent. In this sense, checklists are treated as presence-absence
data.
One of the simplest ways to convey the distribution of

a species is to simply show all of the locations where the
species is known to be present or absent on a map. However,
this sort of highly simplified “species distribution" is not able
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to make any predictions about whether a species might be
present or absent at locations which have not been sampled.

2.2 Statistical models.
To create species distributions that can extrapolate beyond
sampled locations, we can pair species observations with
collections of environmental characteristics (altitude, land
cover, humidity, temperature, etc.) and fit statistical models
that use the environmental characteristics to predict species
presence or absence. These models can make predictions at
any place and time for which these environmental charac-
teristics are known. Species distribution models fall into this
category, and are our focus throughout this document.

2.3 Expert range maps.
Species range maps have traditionally been heavily influ-
enced by the individual scientists who study those species.
These maps are often based on a complex combination of
heterogeneous information sources, including personal ob-
servations, understanding of the species’ habitat preferences,
local knowledge/reports, etc. From our discussions with prac-
titioners, we find that these expert range maps (ERMs) are
often the most trusted source of distribution information.
Perhaps the most widely-known expert range maps are those
published by IUCN [81] as part of their Red List of vulnerable
and endangered species. An example of the IUCN range map
for the caracal can be seen in Fig. 2. Studies have shown both
agreement [17] and disagreement [77, 99] between ERMs
and species observation data. Expert range maps have also
been found to be highly scale-dependent, tending to overes-
timate the occupancy area of individual species and ranges
< 200km [98]. It is important to note that ERMs come in
many forms, from hand-drawn maps to data-driven maps
that are slightly refined by experts. In the latter case, ERMs
are partially based on species observation data, so the two
cannot be treated as independent sources. As we will dis-
cuss in more detail in Section 3.5, the lack of a solid “ground
truth” information about the true underlying distribution of
species across space and time makes it difficult to analyze
the accuracy of any species distribution model, including
those drawn by experts.

3 Species Distribution Models
The terminology in this area can be confusing, so we will
start with a definition and a few clarifications.

Intuitive definition. A species distribution model is a
function that uses the characteristics of a location to predict
whether or not a species is present at that location. This can
be understood as a supervised learning problem. The input is
a vector of environmental characteristics for a location and
the output is species presence or absence. In principle one
could use almost any classification or regression technique
as the basis for an SDM.

Figure 2. The International Union for Conservation of Na-
ture (IUCN) publishes expert range maps for many species,
particularly those on their “Red List of Threatened Species"
[196]. Here we show the IUCN Range Map for the Caracal
caracal [22].

Formal definition.The key components of a simple species
distribution modeling pipeline are: (1) species observation
data, (2) a method for encoding locations, and (3) a function
which maps location encodings to predictions. Formally, we
define these components as follows:

1. A dataset of species observations. This is a collec-
tion of records indicating that a species is present or
absent at given location and time. We write this as
{(xi ,yi )}Ni=1 where xi ∈ X is a spatiotemporal location
and yi ∈ {0, 1} indicates presence (1) or absence (0).
The spatiotemporal domain X is typically something
likeX = [0, 180)×[0, 360)×[0, 1)which encodes global
longitude and latitude as well as the time of year.

2. A location representation h : X → Z ⊂ Rk . This is
typically a simple “look-up" operation, where x ∈ X

is cross-referenced with k pre-defined geospatial data
layers to produce a vector of location features h(x) ∈
Rk . That is, h(x) is a representation of the location
x ∈ X in some environmental feature space.

3. A model fθ : Z → [0, 1]where θ is a parameter vector.
The goal is to find parameters θ of f so that fθ (h(x)) =
1 when the species is present and fθ (h(x)) = 0 other-
wise. This is usually framed as a supervised learning
problem on the dataset {(h(xi ),yi )}Ni=1.

Note that this is a streamlined formalization meant to cap-
ture the essence of SDM. While there are many variants
in practice, almost any species distribution modeling will
include these core concepts.

What does an SDM actually predict? An SDM takes
as input a vector of environmental features and predicts a
numerical score (usually between 0 and 1) for a location. An
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important distinction to note regarding SDMs is geographic
space vs. environmental space, elucidated in Fig. 3. This score
is often interpreted as a prediction of habitat suitability. Typ-
ically the score may not be interpreted as the probability a
species is present. Note that here we are only considering
presence vs. absence - predicting species abundance is a more
challenging problem, which we discuss in Section 4.2.

How is an SDM used? The most common end product is
a map of the SDM predictions, which is produced by simply
visualizing the SDM predictions across an area of interest.
Binary predictions can be obtained by applying a threshold
to the continuous predictions of the SDM.

3.1 A brief history of species distribution modeling
Early predecessors for SDM include qualitative works that
link patterns within taxonomic groups to environmental
or geographic factors, such as Joseph Grinnel’s 1904 study
of the distribution of the chestnut-backed chickadee [80],
among others [117, 129, 163, 199].
Modern SDMs are primarily statistical models fit to ob-

served data. Early quantitative approaches used multiple
linear regression and linear discriminant function analyses
to associate species and habitat [41, 171]. The application of
generalized linear models (GLMs) [20, 132] provided more
flexibility by allowing non-normal error distributions, addi-
tive terms, and nonlinear relationships. The explosive pro-
liferation of large “presence-only" datasets (see Table 1) in
recent years has led to the development of new modeling
approaches to SDMs such as the popular “Maximum Entropy
Modeling" (MaxEnt) approach [147] with roots in point pro-
cess modeling [155].

The first modern SDM computing package, BIOCLIM, was
introduced in 1984 on the CSIRO network [35, 40]. This
package took observation information, such as the species
observed, location, elevation, and time, and used them to de-
termine what environmental variables correlated with that
species’ occurrence. These variables were then used to map
possible distributions of the species under consideration.
Climate interpolation techniques developed for BIOCLIM
are the basis of the existing WorldClim database [66] and
are still widely used in SDMs today. Many different imple-
mentations of various SDM methods are now publicly avail-
able. We would like to highlight Wallace [107], which is a
well-documented R implementation of historic and modern
techniques.

As earth observation technology has improved, the scope
of what is possible to include as an environmental covariate
in a model has vastly increased. Improvements in weather
monitoring systems gave access to high-temporal-frequency
temperature, wind, and precipitationmeasurements. Recently,
ecologists have turned to remote sensing imagery to esti-
mate high-spatial-coverage ecological variables such as soil
composition or density of sequestered carbon, as well as
mapping land cover type across regions [91]. Modern SDM

methods pair these covariate estimates with increasingly
accurate global elevation maps, and selected high-quality
but sparse in-situ measurements [112, 153].
Several excellent, detailed reviews of SDMs have been

published within the ecology community [62, 84, 86, 156,
166, 171]. We direct the reader to the excellent summary by
Elith and Leathwick [62].

3.2 Covariates for species distribution modeling
In this section we discuss several environmental character-
istics (often called covariates) that can be used for species
distribution modeling. Here we are focused on describing
the different categories of covariates – details on specific
covariate datasets are available in Section 6. Some of the
covariates we discuss are widely used in the species distri-
bution modeling literature, while others are more recent or
speculative. It is also important to keep in mind that many
covariates are themselves based on sophisticated predictive
models due to the cost of densely sampling any property of
the earth’s surface.

3.2.1 Climatic variables. Temperature and precipitation
are critical characteristics of an ecosystem. Perhaps the most
commonly used climate dataset for SDM is the WorldClim
bioclimatic variables [66] dataset, which provides 19 climate-
related variables averaged over the period from 1970 to 2000
at a spatial resolution of around 1km2. We show a few exam-
ples of variables from this dataset in the top row of Fig. 5.

3.2.2 Pedologic (soil) variables. Soil characteristics are
intimately related to the plant life in an area, which natu-
rally influences the entire ecosystem. One example of a com-
prehensive pedologic dataset is SoilGrids250m [94], which
consists of soil properties like pH, density, and organic car-
bon content at a 250m2 resolution globally. We show a few
examples of variables from this dataset in the bottom row of
Fig. 5.

3.2.3 Vegetation indices. A vegetation index (VI) is a num-
ber used to measure something about the plant life in an
area, and is typically computed from remote sensing data like
satellite imagery. Many different VIs have been proposed. A
review paper published in 1995 discussed 40 different vegeta-
tion indices that had been developed by different researchers
[24]. One of the most popular examples is the normalized
difference vegetation index (NDVI). If a remote sensing im-
age includes the red and near-infrared (NIR) bands, then the
corresponding NDVI image can be computed by applying
the formula

NDVI =
NIR − Red
NIR + Red

(1)

independently at each pixel. NDVI is meant to indicate the
presence of live green plants. From a computer vision per-
spective, these VIs are essentially hand-designed features for
remote sensing data.
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Figure 3. Geographic vs. environmental space.Observation data can be associated with a geographical location, or mapped
into a feature space based on environmental covariates. Most SDMs operate under the assumption that with the right set of
environmental variables and an appropriate model, one could use environmental characteristics to map species distribution.
Figure reproduced with permission, originally published in [62].

3.2.4 Land use / land cover. The term land cover refers
to the physical terrain at a location, while the closely related
term land use tends to emphasize the function of a location.
For instance, an area with the land cover label “dense urban"
may have a land use label like “school" or “hospital." We
provide an example in Fig. 4, which shows RGB imagery and
land cover from two different sources for the same 1km2 area.
It is not obvious what the best label set would be for species
prediction, but practically speaking many of the available
land use / land cover datasets are focused on relatively coarse
categories related to agriculture, natural resources, or urban
development. For instance, the U.S. National Land Cover
Database assigns one of 20 land cover classes to every 30m2

patch of land in the United States at a temporal resolution
of 2-3 years [96]. The classes cover various general habitat
types (water, snow, developed land, forests...) but are not
tuned for species prediction in particular.

3.2.5 Measures of human influence. Humans have had
a profound impact on the natural world, so it is reasonable
to include measures of human influence as environmental
characteristics. For instance, the Human Influence Index
[162] uses eight factors (human population density, railroads,
roads, navigable rivers, coastlines, nighttime lights, urban
footprint, and land cover) to compute a score that is meant
to quantify how much an environment has been reshaped
by humans.

3.2.6 Remote sensing imagery. Imagery collected by satel-
lites, planes, or drones can provide substantial information
about an environment. To start with, we note that vegeta-
tion indices, land cover, land use, and many measures of
human influence are all derived from some form of overhead
imagery like that in Fig. 4. In addition, there may be more

abstract patterns that can be extracted using modern com-
puter vision techniques like convolutional neural networks.
Research on the use of raw overhead imagery (instead of
derived products) for SDM is in its early stages [46, 53, 178].

3.3 Properties of species distribution models
In this section we describe important properties that can be
used to categorize species distribution models. Any particu-
lar species distribution model may or may not have any of
these properties. The categories we describe are in general
nested or overlapping, not mutually exclusive.

3.3.1 Presence only vs. presence-absencemodels. Species
observation datasetsmay be either presence-absence or presence-
only. While presence-only data is easier to collect, the are
limitations on what can be estimated from such data [90].
Typically a species distribution model is designed to handle
either presence-absence or presence-only data, though there
is growing interest in developing methods that can use both
[70, 76, 140].

3.3.2 Single vs. multi-species models. Many SDMs are
designed to model the distribution of a single species. This is
in contrast to multi-species models which are meant to cap-
ture information about several species. Many of the earlier
models are single-species models [62, 147], though interest
in multi-species models has grown over time [89, 97, 134].

3.3.3 Multi-speciesmodels: stacked vs. joint. Multi-species
SDMs can be classified as either stacked or joint. In a stacked
model, a single-species SDM is fit for each species and the
resulting maps are “stacked" on top of one another to provide
a multi-species map. This approach is simple, but it cannot
take advantage of patterns in how species co-occur. This is
the motivation for joint SDMs, in which the estimated distri-
bution of each species also depends on occurrence data for
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Figure 4. RGB imagery (left column) and land cover maps (right column) from two different remote sensing sources covering
the same 1km2 area, from [159]. RGB imagery is manually or semi-automatically annotated to produce the land cover labels.
As this example demonstrates, the set of land cover labels can vary depending on the organization doing the labeling. Figure
reproduced with permission, originally published in [159].

Figure 5. Visualizations of some of the bioclimatic variables (top row: bio_1 - bio_6 from left to right) and pedologic
variables (bottom row: orcdrc, phihox, cecsol, bdticm, clyppt, sltppt from left to right) provided for the GeoLifeCLEF
2020 competition [46]. The area shown in each image is approximately 64 km2 centered in Montpellier, France. While we
visualize each environmental variable as a 2D raster, most species distribution modeling methods are only compatible with
relatively low-dimensional vectors of environmental variables (not “stacks" of 2D patches). As is typical in a collection of
covariates, we see that the pedologic variables have a different resolution than the bioclimatic variables.

other species. Recent work has begun to systematically com-
pare the results from stacked and joint species distribution
models for different species and regions [93, 134, 207].

3.3.4 Spatially explicit models. Typically species distri-
bution models use environmental characteristics to make
predictions about the presence or absence of species. Such
models represent a location in terms of these environmental
features, so two different locations with the same environ-
mental characteristics will lead to the same predictions, even

though the two locations may be far apart. Models that mit-
igate this concern by incorporating geographical location
information directly are referred to as spatially explicit [55]
models.

3.3.5 Occupancy models. It is easier to confirm that a
species is present than it is to confirm that a species is absent.
One confident observation of a species suffices to confirm its
presence at a given location. However, failing to observe a
species at a location does not suffice to prove absence, since
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the species could have been present but not observed. Occu-
pancy models are meant to account for imperfect detection
by modeling the probability that a species is present but
unobserved at a given location conditional on the sampling
effort that has been invested [23, 118].

3.3.6 Understandinguncertainty and error. Species dis-
tribution models attempt to capture the behavior of a com-
plex system from data, which is a challenging and error-
prone process. [160] describes 11 sources of uncertainty and
error in species distribution models, and groups them into
two clusters: (i) uncertainty in the observation data itself
and (ii) uncertainty due to arbitrary modeling choices. [57]
studies the effect of making different reasonable modeling
choices on final projections of species distribution under dif-
ferent future climate scenarios. Similarly, [175] considers the
uncertainty introduced by the arbitrary choice of covariates
while [170] analyzes the effect of uncertainty in the values
of the covariates themselves. [131] focuses on the effect of
uncertainty in the location of species observations. [26] re-
views sources of uncertainty for different types of species
distribution models, as well as best practices for minimiz-
ing uncertainty and methods for incorporating uncertainty
directly into the model.

3.4 Algorithms for species distribution modeling
In this section we provide a high-level overview of the space
of algorithms commonly used for species distribution mod-
eling in the ecological community. This section draws heav-
ily from the organization of [134], which is an excellent
comparative study of different species distribution modeling
techniques. We discuss several commonly used models, and
note that the different methods can have very different prop-
erties, assumptions, and use cases. Unlike some classes of
algorithms, different species distribution modeling methods
are generally not readily interchangeable.

3.4.1 Presence-only methods. Perhaps the most popu-
lar approach for presence-only SDM isMaxEnt [147]. We fol-
low the description given in [64]. The basic idea is to estimate
the probability of observing a given species as a function of
the environmental covariates. The estimate is chosen to be
(i) consistent with the available species observation data and
(ii) as close as possible (in KL divergence) to the marginal dis-
tribution of the covariates. Criterion (ii) is necessary because
there are typically many distributions that satisfy criterion (i).
Another simple approach for presence-only SDM is to intro-
duce artificial negative observations called pseudonegatives
or pseudoabsences based on some combination of domain
knowledge and data. Once pseudonegatives have been gen-
erated, they are combined with the presence-only data and
traditional presence/absence methods are applied.

3.4.2 Traditional statisticalmethods. Perhaps themost
commonmethods in species distributionmodeling areworkhorse

methods drawn from the statistics literature such as general-
ized linear models [71, 73, 138, 193, 197]. Important special
cases include logistic regression [143] and generalized addi-
tive models [205]. Some species distribution modeling algo-
rithms are better thought of as general frameworks whose
particular realization depends on the available data sources
and modeling goals. As an example, the Hierarchical Model-
ing of Species Communities (HMSC) framework [138] mini-
mally requires species occurrence data with corresponding
environmental features. The species occurrences are related
to environmental features by a generalized linear model.
However, the framework can be extended to incorporate e.g.
information on species traits and evolutionary history.

3.4.3 Machine learning methods. The relationship be-
tween species and their environment is complex and may
not satisfy traditional statistical assumptions such as linear
dependence on covariates or i.i.d. sampling. For this reason,
machine learning approaches have also enjoyed considerable
popularity in the species distribution modeling literature. Ex-
amples include boosted regression trees [63], random forests
[48], and support vector machines [58]. In addition, neural
networks have been used for species distribution modeling
since well before the deep learning era [37, 139, 183, 206].
Interest in joint species distribution modeling with neural
networks has only grown as deep learning has come to matu-
rity [89]. Convolutional neural networks in particular have
created a new opportunity: the ability to extract features
from spatial arrays of environmental features [43, 51] in-
stead of using hand-selected environmental feature vectors.

3.5 The challenge of evaluation
How can we tell whether a species distribution model is
performing well or not? The typical approach in machine
learning is to use the model to make predictions on a held-
out set of data and compute an appropriate performance
metric by comparing the model predictions to ground-truth
labels. But what is “ground truth" for a species distribution
model?

3.5.1 Notions ofGroundTruth. Wedescribe several com-
mon approaches to the challenging problem of how to eval-
uate SDMs in practice. For further detail, [127] provides an
excellent discussion of different metrics for evaluating SDMs
and the extent to which they are ecologically meaningful.

Compare against presence-absence data. Ideally, for
each location, an expert observer would determine whether
each species of interest is present or absent at that loca-
tion. Conducting this kind of survey for a single species in
a limited area is expensive, and the survey would need to
be repeated periodically to monitor change over time. These
exhaustive surveys quickly become extraordinarily expen-
sive as we expand the number of species of interest or the
geographic extent of the survey. Even if the resources were
available, the observations would have some degree of noise
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- in particular, confirming that a species is absent from an
area can typically only be done up to some degree of cer-
tainty. (See the discussion of occupancy modeling in Section
3.3.5.) For most species and most locations on earth, this
sort of ideal ground truth data is just not available. How-
ever, this kind of evaluation is possible for select species and
locations at sparse time points. For instance, [60] includes
presence-absence data for 226 species from 6 parts of the
world collected at various time points.

Compare against presence-only data. Unfortunately,
presence-absence data is often unavailable.We describe a few
simple methods for comparing predictions against presence-
only data along with their shortcomings.

• False negative rate: how often are locations which
are known to be positive predicted to be negative?
The false negative rate measures whether the model
is consistent with the observed positives, but does not
assess the model’s behavior at other points.

• Top-k classification accuracy: how often is the ob-
served species among the k most likely species under
the model? However, there is not an obvious way to
choose k . Moreover, for any fixed k it is likely that
some locations will have more than k species while
others will have fewer.

• Adaptive top-k classification accuracy: this is a vari-
ant of the top-k classification accuracy that assumes
that the number of species is k on average, while al-
lowing some locations to have more than k species
while others may have fewer. See [46] for details. Like
standard top-k classification accuracy, choosing k may
be difficult.

Note that adaptive top-k and top-k are both metrics for multi-
species models, while the false negative rate can be computed
for single species models as well.

Compare against community science data. Commu-
nity science projects like iNaturalist and eBird are generating
species observation data at an extraordinary rate and fre-
quency. iNaturalist alone generates millions of species obser-
vations per month [1]. However, the data produced by such
projects can vary in terms of how easy it is to use and inter-
pret depending on the sampling protocol [111]. For instance,
iNaturalist accepts presence-only observations, which allows
the user base to scale broadly but limits the utility of the data
for ground truthing. iNaturalist data tells us where different
species have been observed by humans, but not where those
species are either absent or present without human obser-
vation. eBird uses a more rigorous sampling protocol that
records both presences and absences, but their observations
are limited to birds. The quality of these reports depends on
the skill of the user at identifying all bird species they see or
hear. Citizen science data has been found to produce results
similar to those from (coarse) professional surveys under the
right circumstances [95, 111, 186].

Compare against expert range maps. Another possi-
bility is to compare the model predictions against one or
more range maps that are hand-drawn by experts (see Sec-
tion 2). However, this raises the question: how do we validate
those range maps? A hand-drawn map may be biased by an
individual’s experience or by the data sources the expert
prefers. In addition, it can be difficult to find a suitable ex-
pert to generate a map for every species of interest. Another
challenging question relates to temporal progression: is each
expert updating their maps according to the latest data? If
so, when was that data collected? The IUCN has a published
set of standards for creating species range maps [81], but not
all creators of maps match these standards.
In addition, there is the methodological question of how

one should evaluate a model against an expert range map,
which is explored in [119]. Approaches range from very qual-
itative (ask an expert whether the map looks reasonable to
them) to very quantitative (compute a well-defined error
metric between the SDM predictions and the expert range
map). Important to note here, expert range maps are most
often categorical, with hard boundaries drawn representing
temporal categories like “breeding”, “non-breeding”, “year-
round”, etc. On the other hand, SDM predictions are often
real-valued on [0, 1] over both space and time.While continu-
ous predictions can be converted to binary maps by applying
a threshold, it can be unclear how to choose this threshold if
a robust validation method is not available.

Evaluation on downstream tasks. Instead of evaluat-
ing whether a species distribution model produces a faithful
map of species presence, we may instead check whether it is
useful for some other downstream task. For example, [18]
builds a simple SDM and demonstrates that it improves accu-
racy on an image-based species classification task. However,
it is certainly possible for an SDM to be useful whether or
not it accurately reflects the true species distribution.

3.5.2 Evaluationpitfalls. Evenwhen suitable ground truth
data is available, there are some pitfalls that can hinder mean-
ingful evaluation. In this section we discuss some of these
pitfalls and make specific recommendations to the machine
learning community for handling them.

Performance overestimation due to spatial autocor-
relation. In the machine learning community it is common
to sample a test set uniformly at random from the avail-
able data. However, this strategy can lead to overestimation
of algorithm performance for spatial prediction tasks since
it is possible to obtain high performance on a uniformly
sampled test set by simple interpolation [157]. This effect is
called spatial autocorrelation. Similar concerns are relevant
for evaluating camera trap image classifiers [32]. For eco-
logical tasks, it is important to evaluate models as they are
intended to be used. In many cases, the more ecologically
meaningful question is whether the model generalizes to
novel locations, unseen in the training set. In these cases it
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is important to create a test set by holding out spatial areas.
In other cases, the ecologist seeks to build a model that will
perform accurately in the future at their set of monitoring
sites. In these cases, instead of holding out data in space,
we can split the data to hold out a test set based on time. A
randomly sampled test set is not a good proxy for the use
case of either scenario.

Hyperparameter selection. The performance of an al-
gorithm typically depends on several hyperparameters. In
the machine learning community these are set using cross-
validation on held-out data. However, selecting and obtain-
ing a useful validation set can be particularly challenging
in SDM due to the data collection challenges described else-
where. Recent work has also studied the sensitivity of SDMs
to hyperparameters [87] and developed techniques for hyper-
parameter selection in the presence of spatial autocorrelation
[165].

Spatial quantization. A natural first step when working
with spatially distributed species observations is to define a
spatial quantization scheme. By “binning" observations in
this way, we can associate many species observations with a
single vector of covariates. Additionally, spatially quantized
data can be more natural from the perspective of many ma-
chine learning algorithms since the domain becomes discrete.
However, the choice of quantization scheme (grid cell size)
is difficult to motivate in a rigorous way. This is a problem
because different quantization choices can result in vastly
different outcomes - this is known as the modifiable areal
unit problem [137]. It is possible to cross-validate the quan-
tization parameters, but only in those limited cases where
there is enough high-quality data for this to be a reliable pro-
cedure. Furthermore, that process may be computationally
expensive.

The long tail.Many real-world datasets exhibit a long tail:
a few classes represent a large proportion of the observations,
while many classes have very few observations [32, 191].
Species observation data is no exception - for example, in
the Snapshot Serengeti camera trap dataset [172] there are
fewer than 10 images of gorillas out out of millions of images
collected over 11 years. This presents at least two problems.
The first problem is that standard training procedures will
typically result in a model that perform well on the common
classes and poorly on the rare classes. The second is that
many evaluation metrics are averaged over all examples in
the dataset, which means that the metric can be very high
despite poor performance on almost all species. It is much
more informative to study the performance on each class or
on groups of classes (e.g. common classes vs. rare classes).
One common solution is to compute metrics separately for
each class and then average over all classes to help avoid
bias towards common classes in evaluation.

3.5.3 Model trust. Once a model has been built, the pre-
viously discussed challenges of model evaluation make it

difficult to determine where, how much, and for how long
a model is sufficiently accurate to be used. The accuracy
needed may also vary by use case and subject species. In
our discussions with ecologists, we find that this leads to a
lack of trust in SDMs. What verification and quality control
is needed to ensure a model is still valid over time? This is
an open question, and an important one to answer if our
models are to be used in the real world.

4 Other types of ecological models
Species distribution modeling is only one of many ways
that ecologists seek to describe and understand the natural
world. To give readers a sense of how SDM fits into the
broader scope of ecological modeling, we provide a high-
level overview of other common modeling tasks.

4.1 Mechanistic models
Mechanistic models make assumptions about how species
depend on the environment or on other species. One example
is to use an understanding of a plant’s biology to predict the
viable temperature range where the plant can grow [173].
Such models are useful but difficult to scale, as they require
species-specific expert knowledge. Our focus in this work
is on correlative species distribution models, which do not
require mechanistic knowledge.

4.2 Abundance modeling
Abundance modeling goes beyond species presence or ab-
sence, aiming to characterize the absolute or relative number
of individuals at a given location. We define abundance and
related concepts in Section 4.3.

4.2.1 Population estimation. Population estimation is
concerned with counting the total number of individuals of a
species, typically within some defined area [164]. Population
size is most frequently estimated using capture-recapture
models, which require the ability to distinguish between
individuals of the same species. Traditionally this individ-
ual re-identification was based on physical tags or collars
[78], but some recent efforts have relied on the less invasive
method of identifying visually distinctive features, such as
stripe patterns or the contour of an ear [33].

4.2.2 Density estimation. Density estimation seeks to
model spatial abundance, the abundance of a species per
unit area, to understand where a species is densely versus
sparsely populated [161, 194].

4.2.3 Data collection procedures for abundance. As
mentioned above, capture-recapture requires an individual to
be re-identifiable. In the absence of the ability to re-identify
individuals, several other data collection procedures are used.
One that is frequently used for insects and fish populations is
the harvest method, where individuals are collected in traps
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which are open for a set amount of time and then counted
[151, 167]. Sampling strategies for other taxa include:

• Quadrat sampling. A quadrat is a fixed-size area
where species are to be sampled. Within the quadrat,
the observer exhaustively determines the occurrence
and relative abundance of the species of interest. Quadrat
sampling ismost commonly used for stationary species
like plants. The observer will sample quadrats through-
out the region of interest to derive sample variance
and conduct further statistical analysis [88].

• Line intercept sampling.A line intercept or line tran-
sect is a straight line that is marked along the ground
or the tree canopy, and is primarily used for stationary
species [92]. The observer proceeds along the line and
records all of the specimens intercepted by the line.
Each transect is regarded as one sample unit, similar
to a single quadrat.

• Cue counting. Cue counting is based on observing
cues or signals that a species is nearby, such as whale
or bird calls. It is used primarily for species that are
underwater or similarly difficult to sight [120].

• Distance sampling. Distance sampling refers to a
class of methods which estimate the density of a pop-
ulation using measured distances to individuals in the
population [38]. Distance sampling can be added to
line transects in order to incorporate specimens that
are off the transect line but still visible. Appropriately
calibrated camera traps can also benefit from distance
sampling [161].

• Environmental DNA (eDNA) sampling. Samples
of water or excrement collected in the field can be
sequenced to provide species identifications. The ratios
of environmental DNA for each species can be used
to estimate abundance [116, 188].

Each of these procedures produces different types of data,
and each method comes with its own innate collection biases.
These biases can add to the challenge of evaluating ecological
models, as discussed in Section 3.5.

4.3 Biodiversity measurement and prediction
While it is important to understand the distribution of partic-
ular species, in many cases the ultimate goal is to understand
the health of an ecosystem at a higher level. Biodiversity is a
common surrogate for ecosystem health, and there are many
different ways to measure it [104, 105, 200]. In this section we
define and discuss several biodiversity metrics and related
concepts. Note that some sources give different definitions
than those presented here, so caution is warranted.

We now define some preliminary notation.We letR denote
an arbitrary spatial unit such as a country. Many biodiversity
metrics are computed based on a partition of R into N sub-
units, which we denote by {Ri }

N
i=1. The choice of partition

can have a significant impact on the value of some metrics,

but for the purposes of this section we simply assume a
partition has been provided.

Species richness. The species richness ofR is the number
of unique species in R, which we write as S(R).
Absolute abundance. The absolute abundance of species

k in R is the number of individuals in R who belong to species
k . We write this as Ak (R).

Relative abundance. The relative abundance of species
k in R is the fraction of individuals in R who belong to species
k , which is

pk (R) =
Ak (R)∑S (R)
j=1 Aj (R)

. (2)

Since
∑S (R)

j=1 pj (R) = 1 and pj (R) ≥ 0 for all j ∈ {1, . . . , S(R)},
the vector of relative abundances p(R) = (p1(R), . . . ,pS (R)(R))
forms a discrete probability distribution. The species rich-
ness can then be alternately defined as the support of this
distribution, given by

S(R) = |{j ∈ {1, . . . , S(R)} : pj (R) > 0}|. (3)

Of course we can replace pj with Aj everywhere and get an
identical quantity.

Shannon index. The Shannon index of R is the entropy
of the probability distribution p(R), so

H (p(R)) = −

S (R)∑
j=1

pj (R) logpj (R). (4)

The Shannon index quantifies the uncertainty involved in
guessing the species of an individual chosen at random from
R. Sometimes H is instead written as H ′, and sometimes the
argument is written as R instead of p(R).
Simpson index.The Simpson index ofR is the probability

that two individuals drawn at random from the dataset (with
replacement) are the same species, and is given by

λ(R) =

S (R)∑
i=1

p2i . (5)

Alpha diversity. The alpha diversity of R is the average
species richness across the sub-units {Ri }Ni=1, given by

α(R) =
1
N

N∑
i=1

S(Ri ). (6)

Gamma diversity. The gamma diversity of R is defined
as

γ (R,q) =

(S (R)∑
j=1

p
q
j

)1/(1−q)
(7)

where q ∈ [0, 1)∪(1,∞) is a weighting parameter [104]. Note
that gamma diversity is also commonly denoted by γDq(R).
There are several interesting special cases:

• If q = 0 then gamma diversity reduces to species rich-
ness i.e. γ (R, 0) = S(R).
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• Gamma diversity is also related to the Shannon index,
since limq→1 γ (R,q) = expH (p(R))[104].

• If q = 2 then gamma diversity reduces to the inverse
of the Simpson index i.e. γ (R, 2) = 1/λ(R).

Beta diversity. The beta diversity of R is meant to mea-
sure the extent to which sub-units Ri are ecologically differ-
entiated. This can be interpreted as a measure of the vari-
ability of biodiversity across sub-regions or habitats within
a larger area. It is defined as

β(R,q) =
γ (R,q)

α(R)
(8)

whereq is the sameweighting parameter we say in the defini-
tion of gamma diversity [104, 185]. Beta diversity quantifies
how many sub-units there would be if the total species di-
versity of the region γ and the mean species diversity per
sub-unit α remained the same, but the sub-units had no
species in common.

5 Common challenges and risks
5.1 Differences in tools
R is the dominant coding language in ecology and statistics,
but Python is dominant in machine learning. This language
barrier limits code sharing, which in turn limits algorithm
sharing. It is also important to note that some machine learn-
ing models are extremely computationally demanding to
train, and some ecologists may not have access to the neces-
sary computational resources.

5.2 Differences in ideas and terminology
Differences in concepts and terminology can make it difficult
for machine learning practitioners to find and read relevant
work from the ecology community (and vice-versa). How-
ever, there is a growing body of interdisciplinary work which
brings ecologists and computer scientists together [2, 8, 14].
It is important for computer scientists working in this area to
establish ties with ecologists who can help them understand
how to make ecologically meaningful progress.

5.3 Combining data sources
Species observation data is collected according to many dif-
ferent protocols, which means that effectively combining
different data sources can be nontrivial [75, 110, 125, 141].
For instance, observations collected in a well-designed sci-
entific survey have significantly different collection biases
from observations collected via iNaturalist. Handling these
biases in a robust, systematic way can be quite challenging,
particularly for large collections of data encompassing thou-
sands of different projects, each with their own sampling
strategies. In many cases, understanding the protocols used
for a specific data collection project within a larger reposi-
tory requires one to delve into the literature for that project.

However, for many projects there do not exist accessible,
standardized definitions or quantitative analysis of bias.

5.4 Black boxes, uncertainty, and interpretability
Machine learning models are frequently “black boxes," mean-
ing that it is difficult to understand how a prediction is being
made. Ecologists are accustomed to models that are simpler
to inspect and analyze, where they can confidently deter-
mine what factors are most important and what the effect of
different factors might be. Because the results of ecological
models are used to drive policy, being able to interpret how
a model is making predictions and avoid inaccuracies due to
overfitting is important. This is closely related to trust (or
lack thereof) in model outputs and the need for uncertainty
quantification, particularly in scenarios where models are
being asked to generalize to new locations or forward in
time.

5.5 Norms surrounding data sharing and open
sourcing in ecology

Computer science has benefited from strong community
norms promoting public data and open-sourced code. One
consequence of this shift is that it is easy for computer sci-
entists to take data for granted and to be frustrated when a
scientist is unwilling to share their data publicly. However,
it is important to remember that in some fields data can be
extremely expensive to collect and curate. The cost of the
hardware, travel to the study site, and the time needed to
place the sensors and maintain the sensor network quickly
adds up. Add to this the number of hours it takes for an expert
to process and label the data so that it is ready for analysis,
and it is easy to see why a researcher would want to publish
several papers on their hard-won data before sharing it pub-
licly. On the other hand, public datasets like those hosted
on LILA.science [10] have clear benefits for the community
such as promoting reproducible research. Properly attribut-
ing data to the researchers who collected it (e.g. through the
use of “DOIs for datasets" [158]) could encourage more open
data sharing in ecology. Data sharing norms are changing
and many researchers are now happy to share their data and
are pushing for more open data practices [152, 154], but it
is important to be aware of this cultural difference between
computer science and other fields.

5.6 Model handoffs, deployment, and accessibility
Once a machine learning method has been rigorously evalu-
ated and found to be helpful, it is important to ensure these
techniques are accessible to those who can put them to good
use. In computer science, we have a culture of "open code,
open data" which means that for most papers, all of the data
and code is publicly available. However, ecologists may be
less familiar with machine learning packages like PyTorch
and TensorFlow, and may not have access to the computa-
tional resources required to train models on their data. If a

339



COMPASS ’21, June 28-July 2, 2021, Virtual Event, Australia Sara Beery, Elijah Cole, Joseph Parker, Pietro Perona, and Kevin Winner

method is to have real impact for the ecology community, it
is important to provide models and code in a format that is
accessible to end-users and well-documented. If the model
is meant to become an integral part of an ecology work-
flow, plans for model maintenance and upkeep should be
discussed.

5.7 Sensitive species
It is common for ecologists to obfuscate geolocation infor-
mation before publishing any data containing rare or pro-
tected species to avoid poaching or stress from ecotourism.
However, it is unclear whether obfuscation of GPS signal is
sufficient to obscure the location of a photograph. It may be
that a better solution is to remove any photos containing
sensitive species, or to restrict sensitive access to a list of
verified members of the research community. Second, the
obfuscation distance of GPS location in published datasets
might have a large effect on the accuracy of an SDM or other
ecological model, particularly when both the training and
validation data have been obfuscated. This obfuscation will
further effect the reproducibility of a study, as results with
or without obfuscation might be quite different.

6 What data is available and accessible?
There is an increasing number of publicly available ecological
datasets that can be used for model training and evaluation.
In this section we provide a few useful data sources as a start-
ing point. We make a distinction between “analysis-ready"
datasets which package species observations and covariates
together and other data sources which can be combined to
produce analysis-ready datasets.

6.1 Traditional analysis-ready datasets for
multi-species distribution modeling

• The comprehensive SDM comparison in [134] uses five
presence-absence datasets covering different species
and parts of the world. Each dataset has a different
set of covariates (min 6, max 38) and a different set of
species (min 50, max 242). The datasets are available
for download on Zenodo [133].

• The recently released benchmark dataset [60] covers
226 species from 6 regions. Each region has a different
set of covariates (min 11, max 13) and a different set
of species (min 32, max 50).

Note that many “traditional" SDM datasets may not be large
enough to train some of the more data-hungry machine
learning methods.

6.2 Large-scale analysis-ready datasets for
multi-species distribution modeling

• The GeoLifeCLEF datasets combine 2D patches of co-
variates with species observations from community
science programs. The GeoLifeCLEF 2020 dataset [46]

consists of 1.9M observations of 31k plant and animal
species from France and the US, each of which is paired
with high-resolution 2D covariates (satellite imagery,
land cover, and altitude) in addition to traditional co-
variates. Previous editions of the GeoLifeCLEF dataset
[36, 50] are also available, and are suitable for large-
scale plant-focused species distribution modeling in
France using traditional covariates. Note that all of the
GeoLifeCLEF datasets are based on presence-only ob-
servations, so performance is typically evaluated using
information retrieval metrics such as top-k accuracy.

• The eBird ReferenceDataset (ERD) [128] is built around
checklists collected by eBird community members. In
particular, it is limited to checklists for which the ob-
server (i) asserts that they reported everything they
saw and (ii) quantified their sampling effort. This al-
lows unobserved species to be interpreted as absences
if sufficient sampling effort has been expended. The
resulting presence/absence data is combined with land
cover and climate variables. Unfortunately, the ERD
does not appear to be maintained or publicly available
as of November 2020.

6.3 Sources for species observation data
• The Global Biodiversity Information Facility (GBIF)
[6] aggregates and organizes species observation data
from over 1700 institutions around the world. We dis-
cuss a few specific contributors below.

• iNaturalist [9] is a community science project that has
produced over 70 million point observations of species
across the entire taxonomic tree. The data can be noisy
as it is collected and labeled by non-experts.

• eBird [3] is a community science project hosted by the
Cornell Lab of Ornithology which has produced more
than 77 million birding checklists. These checklists
provide both presence and absence, but absences can
be noisy as it is possible the birder did not observe
every species that was present at a given location.

• Movebank [12] is a database of animal tracking data
hosted by the Max Planck Institute of Animal Behavior.
It contains GPS tracking data for individual animals,
covering 900 taxa and including 2.2 billion unique lo-
cation readings.

6.4 Sources for covariates
Earth observation datasets and their derived products can
be freely obtained from many sources, including the NASA
Open Data Portal [13], the USGS Land Processes Distributed
Access Data Archive [15], ESA Earth Online [4], and Google
Earth Engine [7]. Also see the detailed discussion of covari-
ates in Section 3.2.

340



Species Distribution Modeling for Machine Learning Practitioners: A Review COMPASS ’21, June 28-July 2, 2021, Virtual Event, Australia

6.5 Sources for training species identification
models

Species observation data can be produced by classifying the
species found in geolocated images. Thosewho are interested
in the species classification problem may be interested in the
datasets below.

• The iNaturalist species classification datasets [189,
190] are curated species classification datasets built
from research-grade observations in iNaturalist.

• LILA.science [10, 32, 136] hosts a number of biology-
focused image classification datasets, including camera
trap datasets covering diverse species and locations.

• The Fine-Grained Visual Categorization (FGVC) work-
shop [5] at CVPR hosts a number of competitions each
year [5, 27, 28, 30, 31, 130, 177, 179, 190] which focus
on species classification and related biodiversity tasks.

7 Open Problems
There are many open problems in SDM that may benefit
from machine learning tools. In this section we discuss a few
of these problems which we find particularly interesting.

7.1 Scaling up, geospatially and taxonomically
One of the main challenges in modern SDMs is scale. This in-
cludes scaling up SDMs to efficiently handle large geographic
regions [100, 108, 181], many-species communities [135, 148,
182, 203], and large volumes of training data [123, 182, 202].
One particularly interesting question is whether jointly mod-
eling many species could lead to SDMs which are signifi-
cantly better than those based on modeling species indepen-
dently.

7.2 Incorporating ecological theory and expert
knowledge

There is a considerably amount of domain knowledge and
ecological theory which would ideally be incorporated into
SDMs [85]. This might include knowledge about species
dispersal [25, 52, 72, 126], spatial patterns of community
composition [44, 49, 103], and constraints on species ranges
(e.g. cliffs, water) [47, 65, 69, 126]. Another area of signif-
icant interest is to factor in cross-species biological pro-
cesses such as niche exclusion/competition [149, 201], preda-
tor/prey dynamics [56, 149, 184], phylogenetic niche evolu-
tion [42, 74, 144], or models linked across functional traits
[45, 150, 195]. These types of “domain-aware" algorithms are
an active research area in the machine learning community
[34, 54, 82, 174].

7.3 Fusing data
A third open area of investigation centers on how to best
incorporate and utilize data collected at different spatiotem-
poral scales or in heterogeneous formats. This includes com-
bining presence-only, presence-absence, abundance, and in-
dividual data such as GPS telemetry data [67, 102, 142, 146].
It also includes multi-scale or cross-scale modeling [176, 187],
such as microclimate niche vs. macroscale niche [113], in-
dividual niche variance vs. species level niche variance[67],
and cross-scale ecological processes[83, 121]. Finally, it may
also include models of temporal ecological processes, such
as seasonal range shifts and migrations [169, 180].

7.4 Evaluation
How shouldwe compare competingmodels and decidewhich
models to trust? Naturally, fair head-to-head evaluation of
different models will be important [19, 61, 134]. Future large-
scale evaluationsmay require accounting for biases in species
observation data [68, 115, 192, 198], especially that which
comes from community science projects. However, it is im-
portant to keep in mind that there is no single metric which
makes one SDM better than another. It may be important to
understand how a model’s predictions change under novel
climate scenarios [21, 39, 69, 114] or different conservation
policies [59, 122, 168] or howwell-calibrated the SDM predic-
tions are [19, 79]. One promising avenue is to studymodels in
increasing realistic simulation environments [106, 124, 204],
which allows for more comprehensive analysis. Many of
these topics are directly related to active areas of machine
learning research, such as generalization, domain adaptation,
and overcoming dataset bias and imbalance [109].

8 Conclusion
We have sought to introduce machine learning researchers to
a challenging and important real-world problem domain. We
have discussed common terminology and highlighted com-
mon pitfalls and challenges. To lower the initial overhead, we
have inventoried some available datasets and common meth-
ods. We hope that this document is useful for any computer
scientist interested in bringing machine learning expertise
to species distribution modeling.
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