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As insects move through the world, they continuously engage

in behavioral interactions with other species. These interactions

take on a spectrum of forms, from inconsequential encounters

to predation, defense, and specialized symbiotic partnerships.

All such interactions rely on sensorimotor pathways that carry

out efficient categorization of different organisms and enact

behaviors that cross species boundaries. Despite the

universality of interspecies interactions, how insect brains

perceive and process salient features of other species remains

unexplored. Here, we present an overview of major questions

concerning the neurobiology and evolution of behavioral

interactions between species, providing a framework for future

research on this critical role of the insect nervous system.
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Introduction
If you’ve ever sifted through leaf litter, examined a

handful of soil, or observed an inflorescence attended

by pollinators, it is strikingly apparent that within these

microcosms exist complex social networks of insects that

are constantly interacting with one another. It’s hard to

imagine living in such a world—one in which an organism

must make rapid life-or-death decisions upon every

encounter with another organism, evaluating if it’s a

potential mate, a food source, a predator, or just a benign

animal crossing paths. Yet this is the living world through

which insects must navigate, engaging in perpetual and

dynamic interactions with diverse species, spanning pre-

dators, prey, parasites, hosts, and novel species never

previously encountered.
$ Given his role as Guest Editor, Joseph Parker had no involvement in the

peer-review. Full responsibility for the editorial process for this article was
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Behavioral responses during these frequent interactions

have critical consequences for survival [1,2]. Yet, despite

their ubiquity and importance, we know remarkably little

about how insect nervous systems distinguish among

different categories of organism and trigger the appropri-

ate behavioral responses. Sensorimotor pathways that

process information about other organisms are under

selection to execute ecologically useful behaviors during

interspecies encounters. In generalist, free-living taxa,

these circuits underlie routine and often transient inter-

actions with a diversity of other organisms, yielding

behaviors such as generalized predation, predator and

parasitoid evasion, physical or chemical defense maneu-

vers, or simply indifference. From this presumably ances-

tral condition, variation in sensorimotor circuitry has

arisen, leading to widespread evolution of specialized

interactions [3]. These include behaviors such as preda-

tion on specific prey species, mutualistic partnerships and

parasitism in all of its forms. Here, we outline the chal-

lenges in understanding interspecies interactions from

both neurobiological and evolutionary standpoints.

Interspecies interactions and their role in
shaping sensorimotor pathways
Critical choices that insects make while interacting with

other organisms arise from a sequence of computations

that the nervous system performs to transform sensory

input into motor output [4]. For instance, as a free-living,

soil-dwelling insect, such as a rove beetle (Staphylinidae),

moves through its environment, it detects other organ-

isms via a repertoire of finely tuned receptors expressed

within its sensory periphery that transduce chemical,

visual, auditory and tactile cues (Figure 1). To filter

relevant signals from a noisy background, sensory proces-

sing is distributed across peripheral and central circuits,

and salient features within and across modalities are

integrated, creating representations of valence (at the

coarsest level, attractive, aversive or neutral), driving

the selection of appropriate motor programs that coordi-

nate muscle action, leading to behavior (Figure 1).

How does the nervous system process the deluge of

sensory information from other species and select the

right behavior? Computations performed by sensorimotor

pathways must be robust to the breadth of interacting

species an insect may encounter, but also flexible enough

to compensate for both changes in environmental back-

ground stimuli and an organism’s internal state.
 peer-review of this article and has no access to information regarding its
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Sensorimotor computations that enable interspecies interactions.

Insects interact with a diversity of other species, here broadly categorized as predator, prey, parasite, or neutral. Upon encountering another

species, an insect’s peripheral sensory systems detect and begin filtering heterospecific sensory cues. These sensory cues are integrated across

multiple modalities and assigned a valence, eliciting the selection of appropriate motor programs that determine how the insect behaviorally

interacts with the heterospecific organism.
Evidently, these computations are also modifiable by

evolution, enabling novel interactions to emerge. Prior

studies on the evolution of insect sensorimotor processing

have primarily explored circuits associated with goal-

directed individual behaviors, such as chemosensory- or

visually-guided navigation, or conspecific interactions

such as courtship [e.g. Refs. 5–7,8��,9–11,12�,13]. Such

behaviors have provided key insights and predictions into

how neural circuits evolve; however, they represent a

small fraction of the types of interactions that insects

experience while navigating the living world. For exam-

ple, identifying and catching a prey item, distinguishing

predator cues and enacting defensive behavior, locating

and interacting with the correct host species, or ignoring a

non-threatening organism are routine behaviors that

many insect species must perform with great frequency.

How these pathways parse the diversity of other species,

selecting from a spectrum of potential interactions to

engage with or respond to other species in adaptive ways,

remains largely unexplored.

Navigating through interspecies sensory
space
Certain key insights into interspecies neural circuitry

have come from the field of neuroethology. For instance,

work on dragonfly prey capture has revealed how a set of

visual neurons (small target motion detector neurons) are

preferentially sensitive to movement of small prey-sized

objects in a range of directions; these cells drive descend-

ing interneurons (target-selective descending neurons)

that transmit target motion information to motor centers
Current Opinion in Insect Science 2022, 50:100891 
[14–16]. Extensive work on predation avoidance strate-

gies in crickets and cockroaches [17] has revealed how a

population of wind sensitive sensory neurons encode

directional information resulting from an approaching

predator, and relay this information to downstream inter-

neurons (giant interneurons) and motor circuits that

enable the animal to make a directed escape response

[18–21]. In these and other examples, however, the

emphasis has been on what these systems reveal about

circuit properties, such as sensitivity and tuning, inform-

ing general principles of animal nervous systems. Less

attention has been paid to how these circuits process

multiple categories of organisms, and the neural trans-

formations that enable categorization and discrimination

of the breadth of species that insects typically encounter.

Regardless of lifestyle, fundamental mysteries apply to all

insect species concerning how the brain processes infor-

mation about other organisms coexisting in the environ-

ment. Below, we identify three major unanswered

questions:

1) What computations does the brain perform to classify other
species?

Except for the most visually guided taxa, insects rely

heavily on chemosensation for detecting and communi-

cating with other species. Different insect species typi-

cally have a small molecule chemical signature encom-

passing cuticular hydrocarbons [22] as well as other
www.sciencedirect.com



Neural basis of interspecies interactions Kanwal and Parker 3
exudates and volatiles such as aggregation and alarm

pheromones or defensive compounds [23,24]. How this

chemical information mediates behaviors between mem-

bers of the same species is now comparatively well

understood in many systems. In contrast, knowledge of

how these compounds are used as ‘allelochemicals’—

governing communication between species—is more lim-

ited [25,26]. Multiple examples exist in which intraspe-

cific cues have been co-opted as allelochemicals by spe-

cialized eavesdropping species. These include numerous

cases of parasitoids and predators exploiting pheromones

of hosts and prey [27–29], or myrmecophiles following

chemical trails of their host ants [30,31]. Do such exam-

ples, in which a particular cue acts as a heterospecific

identifier that triggers adaptive behavior, represent the

norm? We suggest that for the majority of less specialized

interactions between species, they do not. Given the

potentially high number of species in an insect’s local

environment, it seems unlikely that natural selection

would be sufficiently strong for most insect brains to

evolve fine-grained, species-specific identification. More-

over, the success of thousands of species of introduced

insects outside their native ranges, where they have been

observed to adaptively interact with species of prey,

predators, parasitoids and mutualists to which they were

previously naı̈ve, attests to a mechanism of heterospecific

cue processing that is versatile and broadly tuned. Due to

the exceptionally high stakes of a single instance of

failure, the underlying mechanism is likely innate. To

our knowledge, a general system of heterospecific per-

ception has not been proposed for any insect species.

We hypothesize that the insect brain detects heterospe-

cific chemosensory stimuli and applies a heuristic, com-

putationally efficient classifier, enabling rapid, coarse-

grained ‘binning’ of other species (Figure 2a,b). In its

simplest form, such a heuristic algorithm may entail

extraction of salient and invariant features of other organ-

isms followed by classification based on valence—their

attractiveness or aversiveness. Generalizing the represen-

tation of other organisms into positive, neutral, or nega-

tive valence is a potentially efficient approach that can

enable rapid selection of the appropriate downstream

motor response. A somewhat more granular heuristic

algorithm might function by collapsing diverse chemo-

sensory profiles of different species into a smaller number

of dimensions representing major categories—threat,

prey, benign, conspecific mate, conspecific competitor,

and so on—eliciting distinct behaviors (Figure 2b). A

precedent for such a system is found in the nestmate

recognition systems of social insects, such as ants. Here, a

colony-specific CHC profile is employed as a template for

kin recognition. Divergence from the CHC template,

even quantitatively slight, triggers aggression [32,33].

We speculate that this type of heuristic classification,

in which divergence from conspecific chemistry elicits

binning of other species into coarse-grained categories,
www.sciencedirect.com 
may be universal, or at least phylogenetically primitive in

insects.

We further suggest, however, that chemistry alone is

unlikely to ensure robust classification of other species.

Instead, additional sensory cues, including mechanosen-

sory, auditory and thermosensory information, as well as

visual input, may simultaneously be integrated to enable

heterospecific classification [34,35]. Even in the case of

ants, divergence from the colony CHC profile must be

accompanied by further information that distinguishes a

possible prey item from a predator—information critical

for selecting the appropriate motor output of either prey

capture behavior or predator defense behaviors (e.g.

envenomation, release of alarm pheromone, and recruit-

ment of a collective defense response). The information

that ants use to perform this decision-making task is

unknown. Intuitively, integration of other sensory modal-

ities that enable determination of features such as organ-

ism size and kinematics seems likely.

2) Where and how is classification of other species performed
in the insect brain?

The classification and valence assignment of other spe-

cies begins at the sensory periphery. Here, the sensitivity

and tuning of sensory neurons is the first stage of filtering

salient features associated with other organisms, such as

the presence of key pheromones or chemosensory signa-

tures. Furthermore, recent work in Drosophila has dem-

onstrated the existence of a valence map in the olfactory

periphery, suggesting that sensory neurons may them-

selves comprise the first layer at which valence informa-

tion is encoded [36��]. Next, local circuits within sensory

brain regions such as the primary olfactory (antennal lobe,

AL) or visual (optic lobe, OL) centers further filter key

features representing other species, distilling species-

specific information along key dimensions such as odor

intensity and identity, and then integrating this informa-

tion across sensory modalities. For instance, local inhibi-

tory interneurons within the ALs may employ differential

output onto different olfactory receptor neuron types.

These differences in neural activity output in turn enable

distinct odor representations at the AL level for aversive

odor versus pheromone cues, contributing to distinct

behavioral responses upon detection of each cue [37].

Furthermore, valence-specific mapping of insect-associ-

ated chemicals may occur at AL output projection neu-

rons and further downstream in the mushroom body and

lateral horn [38–40,41�,42]. Additionally, multisensory

integration occurs in the mushroom bodies, and, for many

insect species, even earlier in the ALs and OLs [43–46].

Ultimately, however, we simply do not yet know how the

brain represents different categories of other species

along sensorimotor pathways. This is especially true for

multiple sensory modalities transduced by afferent inputs
Current Opinion in Insect Science 2022, 50:100891
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Figure 2
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Heuristic classification of heterospecific stimuli.

(a) Insects encounter diverse species of different categories, each species presenting a distinct multimodal sensory profile (represented here by

PCA plots of each sensory modality). (b) To enact adaptive behaviors, salient heterospecific sensory features are integrated across modalities. The

integrated profile is subjected to heuristic binning, whereby a rapid, course-grained classification based on weighting of different sensory

components is applied. The outcome of heuristic binning is represented here as a t-SNE plot, with species becoming grouped together into

classes based on valences (e.g. negative/positive/neutral) that correspond to different heterospecific categories (e.g. predator or prey). Valence

assignment determines the subsequent behavioral response that the insect selects (e.g. defend versus feed). Regions of overlapping behavioral

responses indicate plasticity in behavior, where the selected behavioral response is contingent on internal state or environment.
that operate along widely different temporal scales, such

as touch and chemosensation.

3) How does the brain balance conflicting behavioral states?

Insect behavior represents a constant balancing of moti-

vations to satisfy adaptive internal and physiological

needs such as satiety, hydration, reproduction and safety.

Often, these persistent needs are in competition with

each other. Thus, even as a predatory insect is hunting, it

must balance perception of appetitive prey cues with

detecting and responding to stimuli from its own pre-

dators. Upon encountering another species, how does the

brain resolve such conflicting drives? One could imagine

that for some species there is a ‘default’ innate setting that

tends to prevail, and is contingent on perpetual needs

within the insect’s specific ecological context. For exam-

ple, for insect species inhabiting hostile environments,

such as ant-dominated litter and soil microhabitats, anti-

predator vigilance may be an adaptive, default behavioral

state to which the nervous system typically returns. In

contrast, for a symbiotic species, the default drive may be

to maintain a constant, intimate association with its host.

In both of these examples, the nervous system would
Current Opinion in Insect Science 2022, 50:100891 
need to trade off these perpetual needs with potentially

conflicting behaviors that arise more transiently, for

example, when encountering conspecifics (e.g. courtship,

mating, or male-male aggression), or prey species (prey

capture and feeding).

Evolving new interactions
It is in these key areas—sensory cue reception,

dimensionality reduction, valence assignment, and bal-

ancing of behavioral states—where evolution acts to

shape novel interactions. The problem of explaining

how relationships between species evolve is twofold.

First, what factors cause nascent interactions to originate

between previously non-interacting species? Second,

what processes shape subsequent evolutionary speciali-

zation, leading to obligate and highly intricate relation-

ships? A paradigm for understanding the evolution of

interspecies relationships is provided by rove beetles of

the subfamily Aleocharinae. Most members of this clade

of �17,000 species possess a benzoquinone-secreting

chemical defense gland that functions as an potent ant

deterrent [47,48]. From an ancestral free-living, predatory

lifestyle, numerous aleocharine lineages have conver-

gently evolved into symbiotic myrmecophiles that

socially interact with specific host ant taxa [48,49,50��].
The evolutionary transition to myrmecophily typifies
www.sciencedirect.com



Neural basis of interspecies interactions Kanwal and Parker 5
features seen in the emergence of many specialized

interactions. First, there is a pronounced shift in inter-

species sensory space such that a single or a narrow range

of other species take precedence (Figure 3a,b). Presum-

ably, defined combinations of chemosensory cues take on

new salience, elevating them into allelochemicals; infor-

mation from other sensory modalities likely becomes

similarly elevated, eliciting multisensory partner detec-

tion. Second, there are dramatic changes in how the

beetle behaves—in this case, engaging ants socially rather

than defensively. How might these changes manifest in

the brain?

At the sensory periphery, numerous examples exist of

insects that exhibit modifications to sensory neuron num-

ber, sensitivity, and/or receptor tuning, which correlate

with specialized ecological associations [51–53]. It is

unclear, however, if changes in cue receptivity alone

can account for the emergence of novel species interac-

tions. Rather, we favor the view that nascent interactions

are established when sensory information becomes rein-

terpreted—that is, via changes in valence. Valence assign-

ment may be a mechanistically facile means of evolving

new interactions: by modifying the behavioral output

associated with previously detectable sensory inputs,

what was once neutral or even aversive may become

attractive (and vice versa). In the case of myrmecophile

rove beetles, the valence of the beetle towards the host

ant has seemingly fully reversed, so what was ancestrally

perceived as a threat and met with defensive behavior is
Figure 3
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now treated as a social partner [48,49,54,55]. Analogous

valence reversals may underlie the evolution of trophic

mutualisms between ants and herbivorous insects. Here,

ants solicit carbohydrate-rich honeydew from taxa includ-

ing sap-sucking hemipteran bugs and lycaenid butterfly

caterpillars, in return providing protection against pre-

dators and parasitoids [56,57]. In these systems, both

partners exhibit diminished hostility towards each other,

instead engaging in productive social behaviors. In still

other interspecies contexts, a pre-existing positive

valence may exist in a generalist ancestor but become

exaggerated, such as genera of scydmaenine rove beetles

that target specific mite taxa [58], or the many highly host-

specific hymenopteran parasitoids [59].

Possible mechanisms of valence evolution
How do valence switches arise evolutionarily? Given its

extreme importance, circuit motifs for valence processing

can be innately hard-coded via labeled lines: parallel

sensorimotor pathways for positive or negative stimuli

that directly relay to motor circuits responsible for coor-

dinating approach or avoidance behaviors [60,61].

Valence assignment can, however, be context dependent,

such that animals can make adaptive decisions depending

on their environment or internal state [62]. For instance,

starved insects can suddenly be attracted to typically

aversive stimuli, a reversal that may be advantageous

in the pursuit of food [63]. Additionally, the foraging

state of an insect can mediate whether certain chemo-

sensory cues are attractive or aversive [64]. An indication
(b)
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of how changes in valence may be mediated evolution-

arily comes from examination of courtship and mating

behavior in Drosophila species. Studying the reproductive

barrier between Drosophila melanogaster and Drosophila
simulans, Seeholzer et al. identified a shift in the balance

between excitation and inhibition relayed from conserved

pheromone-sensitive sensory neurons onto a key node

within courtship-promoting central circuitry, the P1 cells

[8��]. Because of this shift, D. simulans exhibit aversion to

D. melanogaster mating pheromone, thereby safeguarding

against mating with heterospecifics. The P1 cells form a

bottleneck, integrating inputs from multiple sensory

pathways and propagating them to a range of cell types

[65,66]. We hypothesize that analogous flexible nodes

may be a hot spot for sensorimotor circuit changes that

underlie interspecies interactions.

How underlying genetic changes impact the operation of

such nodes is unknown. Although circuit remodeling may

be responsible, mechanisms with a simpler underlying

genetic architecture may account for how changes in

valence can originate readily and spread within popula-

tions. One possibility is via changes in neuromodulation.

Altered production of biogenic amines and their receptors

is a known mechanism for synaptic re-weighting or gain

modulation of neural activity. Neuromodulation can

cause broad, distributed effects on entire sensorimotor

pathways without structural circuit changes, and has been

proposed as a mechanism conferring both plasticity and

evolvability on sensorimotor circuits in a variety of ani-

mals, including insects [67–69]. Neuromodulators can

reversibly tune neuronal excitability or strength to select

between different functional circuit states [70]. For

instance, internal state changes such as hunger or devel-

opmental changes in odor preference are mediated by

neuromodulatory neurons that act on the sensory periph-

ery and local neurons in the brain [71–73]. Because they

often act in a distributed manner, receiving converging

inputs and modulating output globally to multiple layers

within sensorimotor circuits, neuromodulatory neurons

may be strong targets for evolutionary modification.

Moreover, multiple molecular mechanisms are known

that enable neuromodulators to easily switch valence

[71,74,75]. These features of neuromodulatory neurons

imply that perhaps few genetic changes may be needed to

modify their activity and elicit ecologically relevant

changes in behavior.

It is also telling that host neuromodulatory systems are

commonly targeted by symbiotic species. In the lycaenid

butterfly, Narathura japonica, caterpillars secrete honey-

dew that leads to a reduction in dopamine levels in brains

of attendant ants, restricting the ants’ ability to move

away from the caterpillar and leave it unprotected [76]. In

parasitized Manduca sexta, the host brain undergoes

changes in biogenic amines and the accumulation of

neuropeptides, such as octopamine [77], while the
Current Opinion in Insect Science 2022, 50:100891 
emerald jewel wasp, Ampulex compressa, uses a venom

of neuropeptides and neuromodulators that act within a

central region of the cockroach brain to alter locomotory

behavior [78�,79]. If neuromodulation is a common means

of altering host behavior, it follows that evolutionary

changes in neuromodulation may underlie the emergence

of novel behaviors in the symbionts themselves, hence

being causal in the emergence of novel interactions. Some

neuromodulatory mechanisms confer behavioral plastic-

ity, enabling valence to change within an individual’s

lifetime [80–82]. We speculate that these systems could

be targets for evolutionary modification, the altered

valence becoming canalized via genetic assimilation [83].

Cause and consequence in specialization
Following the establishment of a nascent interaction,

subsequent nervous system modifications arise as species

embark on the path of specialization. Intuitively, these

could include peripheral changes in receptor and sensory

neuron responsiveness to heterospecific cues; central

brain modifications that heighten multisensory percep-

tion of and valence towards partner species; and the

evolution of motor sequences that structure the kinemat-

ics of the interaction. The converse is also true, however,

that the evolutionary process of specialization itself has

ramifications for nervous system evolution. The range of

potential species with which a specialist interacts is often

smaller than that of a generalist (Figure 3a,b). This

contraction in the diversity of encounters entails a weak-

ening of selection on parts of sensorimotor circuits that

enable generalist lifestyles. Specialization on another

species may also involve building upon, or recalibrating,

such ancestral circuits. By either means—circuit degen-

eration or modification—novel interactions may evolve at

the expense of generalist behaviors, eventually rendering

the interaction obligate. A corollary of our supposition

above, that generalists employ broad-spectrum heuristic

filtering of heterospecific cues, is that this ability can

become diminished—perhaps ultimately forsaken—in

specialists with highly constrained interactions. To our

knowledge, such a tradeoff between specialist and gen-

eralist behaviors has not been investigated, nor has how it

may stem from constraints within sensorimotor pathways

for heterospecific cue processing.

There is potential for reciprocal reinforcement between

evolution at the nervous system and behavioral levels, as

modifications to the nervous system enable changes in

ecology that in turn alter the selective environment acting

on the nervous system. In such a scenario, the evolution-

ary trajectory may head irreversibly towards greater spe-

cialization [‘runaway specialization’, 84]. The conse-

quences of departing a generalist, free-living lifestyle

are perhaps most blatant in the reductive neural mod-

ifications exhibited by highly specialized insect sym-

bionts. For instance, socially parasitic slave-making ants,

which outsource brood care and foraging to host ants of
www.sciencedirect.com
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other species, have lost approximately half of their gusta-

tory receptors, and also display dramatic losses of olfactory

receptors (ORs) [85��,86��], including 9-exon ORs

thought to be critical for CHC-mediated interactions

underlying eusociality [87]. Convergent losses of the

same chemoreceptor orthologs in independent slave-

making lineages implies that some of these losses may

be adaptive. The convergent loss of eyes across lineages

of myrmecophile rove beetles provides another striking

example. Our own study of eyeless members of the rove

beetle tribe Mimecitini (Figure 3b), associated with

Neotropical Labidus army ants [49,88], has found that

eye loss is correlated with a genomic absence of opsins, as

well as losses of several other loci encoding visual system

components (Kitchen, Yang and Parker, unpublished).

Given that vision is likely of limited use to these noctur-

nal, subterranean symbionts, which are closely tied to a

host ant that is itself blind, eye loss may be adaptive

simply by virtue of the energetic cost of building eyes.

Loss of visual input may, however, be even more benefi-

cial in enhancing the reliance on other sensory modalities

such as chemosensation and touch, which are vital for

locating host workers with which these beetles interact

constantly and intimately. The heightened valence of

socially parasitic ants and myrmecophiles towards their

hosts may thus arise not solely via strengthening of

sensory inputs that transduce host stimuli, but also via

the shedding of competing sensory inputs that have

become ecologically obsolete.

We urge hesitancy, however, in interpreting the behav-

ioral-level and circuit-level peculiarities of extreme spe-

cialists as unambiguous adaptive innovations. Coupled to

specialization are changes in ecology that may restrict

population size, with potential consequences for the

nervous system. Specialists that are tied to single hosts,

such as many obligate social parasites, endoparasites and

ectoparasites, and parasitoids, are often amongst the rarest

insects, seemingly naturally scarce with small effective

population sizes [89–93]. The loss of flight in mimecitine

rove beetles for example, combined with their obligate

dependence on nomadic host colonies that reproduce by

colony fission [94], implies that these beetles are verti-

cally rather than horizontally transmitted between host

colonies. In lineages such as these, which propagate as

miniscule populations, pervasive genetic drift renders it

plausible that some deleterious genetic changes could

become fixed, potentially impacting nervous system func-

tion in non-adaptive ways [95]. Disentangling the popu-

lation genetic forces that reconfigured the nervous sys-

tems of specialist taxa is therefore an additional challenge

we foresee.

Outlook
Navigating interactions with other species is central to a

metazoan existence. Yet, how the brains of insects and

other animals perform this task remains largely
www.sciencedirect.com 
mysterious. We have identified key unsolved problems,

including how the brain classifies the diversity of species

in the environment, assigns valence, and balances internal

states relevant to other species. A mechanistic under-

standing of these phenomena will help uncover how

evolutionary changes within sensorimotor pathways lead

to nascent interactions and underlie subsequent speciali-

zation on other species. We suggest that a comparative

approach—drawing inferences from taxa with specialized

interactions and their closely related generalist rela-

tives—offers a powerful way to uncover both the neuro-

biological mechanisms and evolution of species interac-

tions [96].
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45. Strube-Bloss MF, Rössler W: Multimodal integration and
stimulus categorization in putative mushroom body output
neurons of the honeybee. R Soc Open Sci 2018, 5:171785.

46. Currier TA, Nagel KI: Multisensory control of navigation in the
fruit fly. Curr Opin Neurobiol 2020, 64:10-16.
www.sciencedirect.com

http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0050
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0050
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0050
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0055
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0055
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0055
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0055
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0060
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0060
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0060
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0060
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0065
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0065
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0065
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0070
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0070
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0075
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0075
http://dx.doi.org/10.1002/9781118527061.ch1
http://dx.doi.org/10.1002/9781118527061.ch1
http://dx.doi.org/10.1002/9781118527061.ch5
http://dx.doi.org/10.1002/9781118527061.ch5
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0090
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0090
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0090
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0095
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0095
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0100
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0100
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0105
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0105
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0105
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0110
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0110
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0110
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0115
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0115
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0120
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0120
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0120
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0125
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0125
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0125
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0130
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0130
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0135
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0135
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0135
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0140
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0140
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0140
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0145
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0145
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0145
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0145
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0150
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0150
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0150
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0150
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0155
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0155
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0155
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0160
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0160
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0160
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0165
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0165
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0165
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0165
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0170
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0170
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0170
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0175
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0175
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0175
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0180
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0180
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0180
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0180
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0185
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0185
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0185
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0190
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0190
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0190
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0195
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0195
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0195
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0195
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0200
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0200
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0200
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0200
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0200
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0205
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0205
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0205
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0205
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0205
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0210
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0210
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0210
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0215
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0215
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0215
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0220
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0220
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0220
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0220
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0225
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0225
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0225
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0230
http://refhub.elsevier.com/S2214-5745(22)00026-8/sbref0230


Neural basis of interspecies interactions Kanwal and Parker 9
47. Brückner A, Badroos JM, Learsch RW, Yousefelahiyeh M,
Kitchen SA, Parker J: Evolutionary assembly of cooperating cell
types in an animal chemical defense system. Cell 2021,
184:6138-6156.e28.

48. Parker J: Myrmecophily in beetles (Coleoptera): evolutionary
patterns and biological mechanisms. Myrmecol News 2016,
22:65-108.

49. Maruyama M, Parker J: Deep-time convergence in rove beetle
symbionts of army ants. Curr Biol 2017, 27:920-926.

50.
��

Naragon TH, Wagner J, Parker J: Parallel evolutionary paths of
rove beetle myrmecophiles: replaying a deep-time tape of life.
Curr Opin Insect Sci 2022

A review of the evolutionary forces in rove beetles that underlie the
convergent transition of these insects from free-living predators to
symbiotic myrmecophiles capable of socially interacting with host
ants.<
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